
w

Overview

❑ More than 600 million devices globally use adblockers as 

of December 2016

❑ The rise of adblocking has jeopardized the ad-powered 

business model and publishers have deployed anti-

adblocking paywalls

❑ We propose ShadowBlock, a Chromium-based adblocking 

browser that bypasses anti-adblocking paywalls

❑ ShadowBlock bypasses anti-adblocking paywalls with 100%

success rate and performs as well as state-of-the-art 

adblockers in terms of ads coverage and page loading 

speed

Shitong Zhu*, Umar Iqbal†, Zhongjie Wang*, Zhiyun Qian*, Zubair Shafiq†, Weiteng Chen*

University of California, Riverside*, The University of Iowa†

Key Contributions

❑ Design and implement a stealthy adblocking browser 

❑ Evade 100% of anti-adblockers and replicate EasyList with 98.3% 

accuracy with less than 0.6% breakage

❑ We find that ShadowBlock loads pages as fast as stock Chromium 

running Adblock Plus

❑ We open source our implementation to allow reproducibility as 

well as help future extensions by the research community 

(https://github.com/seclab-ucr/ShadowBlock)

More details in our WWW’19 paper:

ShadowBlock: A Lightweight and Stealthy Adblocking Browser

Shitong Zhu, Umar Iqbal, Zhongjie Wang, Zhiyun Qian, Zubair Shafiq, 

and Weiteng Chen

The Web Conference (WWW) 2019

ShadowBlock

❑ Ads Identification

❑ Statically created ads are detected by monitoring attribute change events

❑ Dynamically (JavaScript) created ads are detected by monitoring elements created with ad scripts

❑ Ads Hiding

❑ ShadowBlock hides the traces of adblocking in a stealthy manner by masking different states caused by 
toggling visibility property

❑ All JavaScript APIs that can be used by anti-adblockers to probe the actual states of ad elements are 

hooked to present a fake state as if ads are still intact

Results & Evaluation

❑ 100% success rate against anti-adblockers whereas dedicated filter lists have only 29% success rate

❑ 97.7% accuracy, with 98.2% recall and 99.5% precision in blocking ads on Alex top-1K websites

❑ Speeds up page loads by 5.96% in terms of median Page Load Time (PLT) and 6.37% in terms of median 

SpeedIndex on Alexa top-1K websites

Tool Notification Ad Switching Crypto-mining

Total 201 5 1

ShadowBlock 201 (100%) 5 (100%) 1 (100%)

Filter lists 59 (29%) 1 (20%) 0 (0%)

It looks like you’re 

using an ad-blocker!

Execution Projection

❑ Dynamically created ad elements can be identified by 

tracking execution stack

❑ Determining the ad-ness by asserting whether there is any 

ad script on stack at DOM events

❑ Feasible due to single-threaded JavaScript execution

// Typical dynamically created ad

var ad_img = document.createElement("img"); 

ad_img.src = "https://advertiser.com/ad.jpg";

document.body.appendChild(ad_img);

www.shitong.me

@zst_rising88

Event TP FN TN FP

Count
926 

(98.2%)

17

(2.8%)

938

(99.5%)

5

(0.5%)

Hiding Mechanism

❑ DOM/CSS Layer: parse flat HTML and CSS in plain-text

❑ Render Tree Layer: combined from DOM and CSSOM

❑ Paint Layer: generating rendered pixels 

to user’s viewpoint according to Render Tree

❑ We choose to toggle CSS property visibility: 

visible as our ad element hiding mechanism

❑ Low-level enough so there are minimum number of 

channels leaking the action to hook

❑ High-level enough to avoid complex object translation

Chromium Instrumentation

❑ Low level instrumentation makes ShadowBlock stealthy and 

efficient

❑ We instrument two major components in Chromium: Blink and V8 

❑ Blink is responsible for constructing the rendering tree 

❑ Bindings module handles interaction between V8 and Blink

❑ Hooking for ad identification

❑ Capture element creation and modification

❑ Capture JavaScript execution stack

❑ Hooking for concealing actions

❑ CSS/Style related – getComputedStyle()

❑ Event Related – onfocus

❑ Hit testing related – elementFromPoint()

❑ Keep track of ad related scripts in execution stack and their activity 

(execution projection) and element modifications for identification 

of ad elements 

Demo

www.umariqbal.com

@umaarr6

Shadow Copy

❑ How do anti-adblockers detect the use of adblockers?

❑ Blocking ads introduces different states that are 

observable to JavaScript runtime

❑ The key of hiding adblockers is masking the difference

❑ We must mask the state returned to 
getElementById() for DOM element “some_ad” as if 

it is still intact, even though it has been hidden by us

// Example anti-adblocking code

var adblock_state = 

document.getElementById('some_ad');

window.setTimeout(function() {

if (adblock_state === undefined)

show_paywall();

}, some_timeout);

// What difference to mask?

var adblock_state = 

document.getElementById('some_ad’);

JavaScript API Ad 

DOM element


