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Abstract—As AI agents attempt to autonomously act on users’
behalf, they raise transparency and control issues. We argue
that permission-based access control is indispensable in provid-
ing meaningful control to the users, but conventional permis-
sion models are inadequate for the automated agentic execution
paradigm. We therefore propose automated permission manage-
ment for AI agents. Our key idea is to conduct a user study to
identify the factors influencing users’ permission decisions and
to encode these factors into an ML-based permission manage-
ment assistant capable of predicting users’ future decisions. We
find that participants’ permission decisions are influenced by
communication context but importantly individual preferences
tend to remain consistent within contexts, and align with those
of other participants. Leveraging these insights, we develop a
permission prediction model achieving 85.1% accuracy overall
and 94.4% for high-confidence predictions. We find that even
without using permission history, our model achieves an accu-
racy of 66.9%, and a slight increase of training samples (i.e.,
1–4) can substantially increase the accuracy by 10.8%.

1. Introduction

LLMs have enabled a new computing paradigm, in
which the system (referred to as an AI agent or an agentic
system) relies on machine learning models to autonomously
resolve user queries expressed in natural language [76].
For example, to resolve a user query to book a flight, the
AI agent might engage with the necessary tools (e.g., a
travel reservation tool), automatically access the required
user information (e.g., from the system storage/memory),
use the user’s credit card details, and make the booking.
While this execution paradigm is tremendously powerful
and is enabling exciting use cases [7], [25], [61], there are
serious security and privacy risks to consider.

At a high level, a key concern is that the AI agent’s
actions may not align with the user’s intentions or expecta-
tions, which could be due to untrustworthy system modules
influencing the LLM [33], [78], [85], LLM making mistakes
on its own [31], [44], [82], or the user simply not agreeing
with the agent’s course of action [41], [54], [75]. These
concerns apply to a broad range of the agent’s activities,
such as autonomous data access and actions in the real-
world. In this paper, we focus on the security and privacy
issues pertaining to the access of data. For example, we
attempt to limit the unexpected sharing of a user’s credit
card details with the wrong tool.

Fundamentally, the key issues are limited user trans-
parency and control over the data access by AI agents. Prior
computing systems, such as mobile platforms, have encoun-
tered similar problems and have relied on permission models
(in which users are asked to grant applications permission to
access sensitive resources) to provide users transparency and
control over data usage in the system [21], [22], [26], [67],
[68]. Similarly, AI agents will need permission management
models to control access to resources.

Permission management, however, needs to be designed
anew for AI agents, where new challenges arise that stretch
the limits of existing permission models. For example, as
AI agents generate new functionalities based on input from
various system modules, data needed to resolve user queries
may not be known beforehand, thus diminishing the utility
of legacy install time permissions. Similarly, as AI agents
may need several pieces of user information to resolve a
user query, constantly interrupting users for permissions is
incompatible with the automation promised by AI agents,
thus diminishing the utility of standard runtime permissions.

Considering that automation is a key value proposition
of AI agents, a permission management system that can
automatically make decisions on users’ behalf is critical for
AI agents. Building an automated permission management
requires addressing two important problems. First, under-
standing the factors that users consider or factors that other-
wise influence users’ permission decision-making. Second,
making permission decisions that precisely meet user needs
and expectations for future data sharing, including previ-
ously unseen data types. This paper takes a multifaceted
approach, including both (i) conducting a user study to
understand user permission preferences and (ii) exploring
the design of a permission prediction system along with its
implementation and evaluation.

To understand users’ data sharing permission prefer-
ences, we conduct a vignette-based user study. We create
a bespoke user study setup by developing our own website
that attempts to immerse participants in training a futuristic
personal assistant, including training it to share data, as per
their needs. We capture differing user preferences across a
wide range of questions spanning several domains, such as
health and fitness, finance, and entertainment. Our findings
indicate that fewer participants express permissions to AI
agents for automatic enforcement when they make mistakes,
and participants often struggle with providing appropriate
permissions, i.e., under- and over-permissioning are com-
mon issues in agentic systems, similar to prior systems [43],
[63], [70]. We also note that participants’ permission deci-
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sions are influenced by the context of the communication,
choice of data being shared, and their privacy consciousness.
Importantly, we find that, at least in the context of our study,
participants’ permission preferences remain consistent, are
similar across various communication contexts, and are of-
ten similar to other participants—presenting an opportunity
to predict their future permissions.

To learn and predict users’ data sharing permission pref-
erences, we explore developing a hybrid machine learning
framework that learn from individual user preferences and
also from preferences of similar users (using data from our
user study). We leverage LLM in-context learning [57] to
learn individual user preferences for two crucial reasons:
(i) we possess limited permission decision history for each
user, and LLMs have demonstrated attaining high accuracy
with limited training data, i.e., “few shots” [19], [57]; (ii)
permission decisions need to be made for unseen data,
which LLMs allow to make without retraining [13]. We
leverage collaborative filtering [29], [30] because it allows
us to learn from the preferences of other similar users. Our
final resulting model combines both in-content learning and
collaborative filtering, as they complement each other. We
achieve an accuracy of 85.1% (with a recall of 85.2% and
a precision of 92.8%). We also explore adjusting prediction
confidence score thresholds and find that a stricter threshold,
we can achieve an accuracy of 94.4%, but compromise
on making predictions for 74.1% of the data. We also
observe that even a slight increase in training data (i.e.,
user permission decision history), our classification accu-
racy substantially increases. For example, accuracy reaches
66.9% without permission history, but incorporating history
from just 1–4 queries improves it by 10.8%. To foster future
research, we release our user study data and code1.

Our key contributions are as follows:
1) We propose automating data access permissions in AI

agents, such that a permission assistant can observe a
user’s permission decision history and can make auto-
matic decisions on the user’s behalf in the future.

2) To realize our goal of automating permission decisions,
we develop a bespoke vignette-based user study to un-
derstand various factors that may influence users’ data-
sharing permission decisions in AI agents. We then
conduct the study with 205 participants on Prolific.

3) We translate the insights from our user study into a
permission inference framework capable of predicting
users’ permission preferences, achieving 85.1% accuracy
overall and 94.4% for high-confidence predictions.

2. Background and Motivation

2.1. AI Agents

While there is no standardized AI agent architecture,
at their core, AI agents (often also referred to as agentic
systems) consist of an LLM (typically accessed via an API),
a system prompt (that defines the agent’s functionality),

1. https://github.com/llm-platform-security/ai-agent-permissions

memory (to keep a record of user interactions and data),
and a set of tools (to take action in the real world) [76]. To
resolve a user query, AI agents identify the relevant tools and
data, formulate an execution plan (i.e., a set of instructions)
for an LLM, and autonomously act on the formulated plan.

For example, for a user query to “book a flight”, the
agent will first determine that it needs to use a travel
reservation tool and requires the user’s information (such as
the user’s name and date of birth). The execution plan may
include instructions to search for flights, provide payment
details, and make the booking. Acting on the plan will
include the agent calling the appropriate travel reservation
tool APIs with the relevant data, listed in the execution plan.

AI agents exhibit varying degrees of autonomy; in some
cases, they can complete tasks entirely of their own, while
in other cases they require some level of human supervi-
sion during execution. For example, for the flight booking
request, agents may retrieve trip dates and locations from
the user query, the user’s name and date of birth from the
memory storage, and may only request the user to provide
credit card information.

2.2. Security and Privacy Risks

As the automated execution paradigm of AI agents
makes user interactions seamless, there are obvious benefits
to it; however, it also presents serious security, privacy, and
safety issues to the users. At a high level, a key concern
is that the AI agent’s actions may not align with the user’s
intentions or expectations. The misalignment could be due to
a variety of reasons, such as untrustworthy system modules
influencing the LLM, LLM making mistakes of its own,
or the user simply not agreeing with the agent’s course of
action. These concerns apply to a broad range of agents’
activities, such as agents using user data of their own or
taking actions on users’ behalf in the real world, which are
distinct and require tailored treatment. For the scope of this
paper, we only focus on limiting the security and privacy
issues that pertain to the usage of data.

Next, we describe some of the fundamental issues that
could lead to a misalignment between users’ expectations
and AI agents’ data usage practices.
Inherent Limitations in Agentic Execution Paradigm.
AI agents enhance their capabilities through exposure to
system resources, such as data and tools. It means that
only when an agent is aware of the system capabilities
(i.e., a particular tool or a piece of data) can it use those.
Thus, agents are often designed to get unrestrained access to
system resources, including the ones that may not be needed
to address the user query, which violates the principle of
least privilege. As LLMs are susceptible to prompt injection,
malicious resources (such as malicious third-party tools or
files) can exploit the LLM’s unrestrained system access to
read sensitive user data or influence the LLM’s execution.

Another key issue is that the LLM’s interfacing is
based on natural language, which can be imprecise and
ambiguous [34], [45]. It means that even in non-adversarial
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scenarios, the underlying LLM in an AI agent might collect
incorrect or unnecessary user data. For example, if the
travel reservation tool imprecisely specifies that it needs
relevant user data to make a travel reservation, the LLM’s
interpretation of this data may be different than that of
the tool and result in inadvertent collection and sharing of
unnecessary user data. Hallucination issues in LLMs may
further exacerbate these problems [34].
Untrustworthy Third-party Tools. AI agents rely on input
from several system modules to determine and steer their
execution. Some of these modules, chiefly tools, are de-
veloped by third-party developers and load unvetted content
from the internet, which makes them an unreliable source to
determine the system’s execution. For example, a malicious,
compromised, or buggy travel reservation tool may direct
the agent to include users’ passport numbers for booking
flights even when it is not necessary (such as for domestic
flights). Prior research has already shown that third-party
tools often collect more data than is needed, including
sensitive data prohibited by the platforms [78]. While the
problem of excessive data collection by third-party services
has existed in prior computing platforms [20], [32], [65],
[74], it presents elevated risks in the case of AI agents,
because of their pivotal reliance on third-party tools to
determine their execution.
Users’ Privacy Consciousness. Users’ expectations, de-
sires, and privacy needs may also simply not align with an
AI agent’s action. For example, prior research has shown
that users often feel uneasy about sharing intimate data
(e.g., health, finances) with AI assistants, fearing misuse
or eavesdropping [40], [49]. Prior research also shows that
users differ significantly in their willingness to share data,
which is often influenced by context trust, tech literacy,
and prior experience [2], [8], [49]. In some cases, users
may refuse to avail some services or compromise on the
user experience. For example, in the context of the flight
booking example, users may prefer providing the origin
flight city manually, instead of having an agent infer it from
the device’s GPS sensor.

2.3. Permission-Based Data Access

Fundamentally, the key issues are limited transparency
and control over the data access by AI agents. Prior comput-
ing systems and platforms, such as mobile platforms, have
encountered similar problems and have relied on permission
models to provide user transparency and control over the
data usage in the system [21], [22], [26], [67], [68]. Like-
wise, agents can also benefit from a permission management
model to control access to resources.

Deployed AI agents, such as ChatGPT, currently adapt
permission models from conventional systems [58]; how-
ever, as we describe next, they fall short in supporting and
instead hinder the automated agentic execution paradigm.
Insufficiency of Existing Permission Models. Permission
management systems for AI agents need to be developed
anew as they significantly differ from conventional comput-

ing systems. Specifically, the install-time [5] and runtime [6]
permissions from conventional systems are insufficient, es-
pecially considering the automated execution paradigm of
AI agents. For example, install-time permissions assume
that the resources needed by applications are known be-
forehand, and thus users can make permission decisions
at the time of installation. In contrast, in most cases of
agent execution, behavior is determined at runtime based
on input from system modules, which can lead to the
emergence of new behaviors. Thus, the resources (which
can be very broad) needed to solve a query may not be
known beforehand [76], [81]. Similarly, runtime permissions
(upon which smartphone platforms have largely converged)
allow users to manually make decisions on access of indi-
vidual resources, which suits conventional systems as only
a handful of resources are accessed at runtime (and where
user interactions already follow a typical UI flow), such
as granting location access permission in mobile platforms.
Whereas agents often require accessing several pieces of
user data at runtime to solve a query, thus merely applying
legacy runtime permission models can degrade the user
experience and contribute to permission fatigue.

While conventional permission models are mostly lim-
ited in supporting the agentic execution paradigm, they
could still be suitable for some use cases. For example, AI
agents could leverage install-time permissions to manage
OAuth-based authentication [1] in AI agents.

3. Towards Automated Permissions Manage-
ment in AI Agents

Considering that a significant number of data resources
are accessed at runtime to facilitate execution of queries—
more than users can reasonably be asked to constantly
evaluate and decide upon—we argue that a permission
management system that can automatically make decisions
on users’ behalf is a necessity for agents. Our observation
is consistent with previous work on voice-based personal
assistants, which found that while users want control, they
dislike excessive prompts and prefer automated permission
management with minimal interruptions [49], and permis-
sion prompt fatigue has been a longstanding known issue in
other contexts as well [11], [22], [53], [72].

3.1. Research Goals

Developing automated permission management requires
addressing three key challenges: (i) understanding diverse
user data sharing preferences, (ii) accurately learning and
predicting user preferences, and (iii) reliably enforcing pre-
dicted preferences. In this paper, we focus on (i) and (ii);
prior complementary work [8], [52], [79] can be used to
address (iii). We describe our approaches to achieve these
goals below.

3.1.1. Goal 1: Understanding diverse user preferences.
A prerequisite to making permission decisions on users’
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behalf is to understand the preferences and expectations of a
variety of users. To understand user preferences, we conduct
a vignette-based user study, which presents several scenarios
to participants to capture their preferences. Building on the
prior work, we identify several factors, such as the context of
the communication, privacy consciousness, and users’ prior
experiences, that may influence user preferences [2], [8],
[40], [49]. Our user-study presents several scenarios to users
to capture their preferences across a wide range of factors
that may influence their preferences.

While prior work exists on understanding user prefer-
ences and expectations for personal assistants, it mostly
focused on older non-LLM technologies [2], [40], [47],
[48], [49]. Newer LLM-based personal assistants/agents
are fundamentally different as they rely on a new natural
language-based automated execution paradigm and offer far
more advanced capabilities. For example, non-LLM agents
mostly supported single-dialog user interactions and carried
out limited tasks automatically; consequently, prior studies
only analyzed a handful of scenarios while examining user
permission preferences [49]. Whereas LLM-agents support
multi-dialog user interactions and carry out many tasks
automatically [50], [81]. Users are likely to form different
mental models for modern LLM-based AI agents than for
traditional, non-LLM agents, so tailored user studies are
essential to capture these distinct experiences. To the best
of our knowledge, we are the first to study user preferences
in automating data sharing permissions in the context of
LLM-based AI agents. Our goal is also not just to sim-
ply understand user preferences, but to translate them to
a system design and explore their utility in automatically
predicting permission decisions. Prior work has also not
explored understanding user permission preferences in AI-
based systems for the purposes of training an automatic
permission prediction assistant.

3.1.2. Goal 2: Accurately learning user preferences. To
enforce user preferences across a wide spectrum of conver-
sational contexts and a range of data types, it is crucial to
develop a permission preference prediction system that ac-
curately learn users’ preferences from a handful of contexts
and applies to other unseen contexts. More specifically, in
a real world setting, users may only provide preferences
for a select few scenarios, and the system may encounter
scenarios that it has not seen before. To tackle these chal-
lenges, we rely on a combination of collaborative filter-
ing [29] and LLM-based in-context learning [57] to develop
our permission inference system. We choose collaborative
filtering because it enables learning a user’s preferences by
analyzing the preferences of similar users [29], [30], thus
avoiding the data sparsity issues. We choose LLM in-context
learning, as it can allow the systems to continuously refine
permission inference and predict new previously unseen data
types, without requiring re-training, as new contexts and data
types are seen [19], [57].

Prior work has proposed predicting user permissions in
the context of mobile [12], [23], [46], [51], [80], IoT [9],
[15], [71], and non-LLM personal assistants [4], [83], [84].

However, prior work can only predict a handful of known
system resources and data types, which suited the needs of
older systems. For instance, notable studies on non-LLM
agents/assistants manage data access permissions across
only 15 data types at a coarse granularity [4], [83], [84].
In contrast, LLM-based AI agents routinely encounter new
previously unseen data types as users explore new use
cases [78], and thus prior approaches simply cannot scale
to AI agents. For example, a classic ML model trained on a
set of data types used by a tool/app would require retraining
to make predictions for new unseen data types used by the
tool/app. Our proposed approach tackles this challenge by
relying on LLM in-context learning, which does not require
retraining to make permission decisions on unseen data.

3.2. Threat Model

System Model. We assume AI agents that maintain user
collected data in dedicated memory modules and attempt to
automatically use that data to provide personalized services
to the users. These AI agents include well-known personal
assistants, such as OpenAI’s ChatGPT [60], as well as AI
agents developed through agent development toolkits, such
as LangChain [28] and LlamaIndex [35]. These AI agents
also support third-party tools, and both the AI agent and
third-party tools can collect and use user data. AI agents also
include system scaffolding that allows them to control the
execution flow, e.g., accessing data from memory, initiating
LLMs, and making network requests via tools [76].

Adversaries and Goals. We assume that the third-party
tools could be untrustworthy/dishonest, malicious, or com-
promised (e.g., via a prompt injection). The attacker’s goals
are to leverage third-party tools to steal sensitive data that
is present in the agent’s memory or exists with other tools.
We assume the LLM to be not malicious but error-prone
and making mistakes in accessing unnecessary and sensitive
data, e.g., due to ambiguity of natural language [34], [45].

Trust Relationships. We assume that the AI agent and its
scaffolding to be trustworthy, and do not have any direct
intent to harm users (though they are still vulnerable to
attacks, e.g., prompt injection). We also assume that the
users may not share data with the AI agents and tools
when they think it is unnecessary or simply do not feel
comfortable sharing that data, despite data being necessary
for the AI agents and tools to provide functionality.

Permission Assistant Design Assumptions. To understand
user preferences, we communicate to users (in our user
study) that the tools may be malicious, compromised, or
dishonestly collect more data than they need. We envision
the deployment of our permission assistant in the system
scaffolding of the AI agent, without the LLM having direct
access to the permission assistant. As the permission assis-
tant makes probabilistic decisions, it may unintentionally
make incorrect predictions in some cases. However, the
permission assistant does not act with malicious intent, and
users retain control over whether to accept its decisions.
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Based on these considerations, we assume the permission
assistant to be trustworthy.
Out of scope. As the implementation and deployment of the
permission assistant requires solving unique challenges of its
own, we do not consider it in the scope of this paper. For
example, a secure personal assistant may require sandboxed
or TEE-based deployment, detection of malicious data flows,
and control of the generation of LLM instructions. We
envision that the prior work on these topics in the context
of AI-agents (e.g., [8], [16], [52], [79]) can be extended to
implement a secure permission assistant.

4. Understanding User Preferences

To automatically make permission decisions on users’
behalf, it is crucial to first understand how users make
permission decisions in the context of agentic systems. To
this end, we conduct a user study to understand users’
permission decision process. Our goal with the user study
is to understand factors that influence users’ decision mak-
ing, so that they can help inform the design of automated
permission management systems.

4.1. Study Design

4.1.1. Overview. We consider several variables in our user
study (such as demographics, privacy consciousness, usage
context) that prior research has identified to influence users’
permission decisions in other computing platforms [2], [8],
[49]. Meanwhile, AI agents introduce unique capabilities
that users have not experienced in prior systems. To help
users become familiar with these capabilities and their as-
sociated risks, and to examine the influence of all factors in
a controlled setting, we develop a vignette-based study [24],
which has been used in prior work investigating users’
privacy preferences [27], [38], [39], [42], [55], [69]. In
our study, we present vignettes to users that attempt to
immerse the participants in training a futuristic personal
assistant to their needs. Specifically, we present scenarios
to participants, where they are asked to help the personal
assistant: (i) pick the right set of tools to solve a query,
(ii) pick the right set of data to solve a query, and (iii)
automatically make data accessing and sharing permission
decisions on their behalf. We present a total of 5 questions
for tool and data selection, and 20 questions for permission
decisions.2 To investigate how potential adversarial manipu-
lations or mistakes may influence users’ decisions, for 25%
(5) of permission decision questions, we include incorrect
(unnecessary) data types and ask participants to express
their data sharing permission preferences. (Our analyses in
Section 4.2.1 and 4.2.2 consider both incorrect and correct
data, while the remaining sections only consider correct
data.) We also include a warning for all permission decision

2. We present 4 options for permission decisions: (1) Yes, always share,
(2) Yes, but ask me next time, (3) No, but ask me next time, and (4) No,
never share. These options are the same as the permission options used
by OpenAI’s custom GPTs [59] (except for never share, which is not an
option in OpenAI’s ecosystem).

questions that prompts the participants to be careful, as the
agent or tools may collect incorrect or unnecessary data.
Additionally, we develop our own custom website to make
the experience more immersive for users3.

4.1.2. Question curation. We develop an LLM-based
framework to curate questions for our user study. We begin
by selecting a set of 8 domains4 and curating 21 tools
(spanning all domains) to record participant preferences
on a variety of topics. Our tool curation involves listing
functionalities offered by the tools and the data needed to
provide those functionalities, leveraging prior work on tool
curation [17], [78]. We treat the data needed by tools as
ground truth.

We iteratively provide domains and their tools to the
LLM, and prompt it to generate queries that users might ask
an AI agent, and that require using one or more tools. Once
queries are generated, three members of our research team
review the generated queries to filter out redundant queries
and semantically group similar data types (e.g., address and
location). In summary, we curate 65 questions5 spanning 8
domains, involving 142 unique data types and 75 generic
data types across 21 tools.

4.1.3. Priming participants. Before participants pursue the
questions in the user study, we prime the participants by ask-
ing them questions about their privacy consciousness (e.g.,
the importance of privacy to the participants, participants’
key privacy concerns). Prior research has shown that asking
about privacy attitudes at the start of a study can raise
participants’ privacy awareness and prompt more cautious
behavior throughout the task [18], [66], [73]. Our goal with
priming is to make participants privacy conscious, so that
their choices more accurately reflect their privacy posture,
as it may in real life when they are training an assistant to
make permission decisions on their behalf.

4.1.4. Participant recruitment. We recruit a total of 205
participants (we remove 2 participants because of invalid
responses) from Prolific [64] in the US, with a minimum
Prolific prior survey approval rate of 90% and age over 18
years. Our study takes approximately 18 minutes to com-
plete, and we pay $4.20 to each participant (using $14 as the
hourly wage at the lead institution). Our study was reviewed
by our institution’s review board (IRB) and deemed exempt.

4.2. Findings

4.2.1. When AI agents make mistakes, fewer partici-
pants express data sharing permissions, but more par-
ticipants express not sharing permissions. As we explore
automating users’ data sharing permissions decisions, we

3. We present the screenshots of our user study website at https://github.
com/llm-platform-security/ai-agent-permissions/blob/main/website.pdf.

4. Entertainment, Health & Fitness, Smart Home, Travel, Shopping,
Work & Productivity, Social, and Finance.

5. The questions are detailed at https://github.com/llm-platform-security/
ai-agent-permissions/blob/main/queries.json.
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Figure 1: Distribution of participant permission preferences.
The false label indicates data sharing instances where un-
necessary data types were presented to participants (along
with the necessary data types).

first investigate permission preferences that participants ex-
pressed to the AI agent. We consider yes, always share
and no, never share permissions, as permissions expressed
for the AI agent to learn participant preferences. Figure 1
presents a distribution of participants and their permission
preferences. We note that 95.1% of the participants express
always share permission decisions to AI agents for one or
more data sharing decisions. The proportion of permission
decisions is higher for sharing data than for not sharing data,
which suggests that users may engage in over-permissioning
(discussed in Section 4.2.2). Specifically, 82.8% and 68.0%
of participants let AI agents to automatically share and not
share data at least once, respectively.

Since real-world AI agents can make mistakes and over-
collect data, we next explore how user permission prefer-
ences change when AI agents make mistakes. Dotted lines
in Figure 1 present distributions of participants and their per-
mission preferences when the AI agent makes mistakes. We
find that participants tend to express more permission deci-
sions for not sharing data (i.e., never share). Specifically, the
number of participants who never express never share per-
mission decision decreases from 32% (when participants are
presented with necessary data) to 21.2% (when participants
are presented with unnecessary data, along with necessary
data). This suggests that AI agent mistakes prompt users to
assess their permission decisions, and many users are able
to identify unnecessary data permissions, and convey to the
AI agent to never share that information.

We note that the number of participants granting per-
missions to automatically share data decreases. Specifically,
the number of participants who never express always share
permissions increases from 17.2% (when participants are
presented with necessary data) to 25.6% (when participants
are presented with unnecessary data, along with necessary
data). When participants do express automatic sharing/non-
sharing permissions, we do not observe substantial changes
in their always share preferences. We surmise that when
some users observe agent mistakes, they are more cautious
in expressing preferences for automatic data sharing.
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Figure 2: Distribution of under-, over-, and appropriate data
sharing permission rate of each participant.

4.2.2. We observe that over-permissioning is substan-
tially more common than under-permissioning. We also
note that while participants struggle with providing
appropriate permissions and often over-share, they are
mostly cautious about sharing sensitive data. Under-
and over-permissioning have been persistent problems in
prior systems, such as mobile platforms, where users often
granted too many or too few permissions due to poor un-
derstanding, misleading interfaces, or decision fatigue [22],
[37], leading to privacy risks and/or broken functional-
ity [3], [77]. Motivated by these challenges, we next examine
whether similar issues arise in the context of AI agents,
where the opacity of AI agents’ execution may make per-
mission alignment even more challenging.

Figure 2 presents the distribution of under-, over-, and
appropriate data sharing permission rates of each user.6
We find that only 8.9% of participants never engage in
under-permissioning and 3.0% of participants never engage
in over-permissioning. We observe that over-permissioning
is substantially more common than under-permissioning,
where 90% of participants engaging in over-permissioning
for 15.4% or more data sharing requests they encounter.
None of the participants give appropriate permissions for all
of the data types on which they were prompted, and only
18.7% of the users give appropriate permissions for 90% or
more data types on which they were prompted.

Through more in-depth analysis, we find that partici-
pants’ data sharing behavior is impacted by the sensitivity
of data. For example, highly sensitive information such as
SSN exhibits an under-permission ratio of about 46.3%,
meaning participants are cautious with sharing such data. In
contrast, for relatively less sensitive data, such as Meeting
Details, which has an appropriate permission of 98.4%,
participants are much more comfortable granting access. For
ambiguous but non-sensitive data types, such as Workspace
Name (generally used by Slack), participants tend to over-
permission for 88.9% of the instances, likely because they
may be uncertain about the actual need of this information.

6. Appropriate permission considers participant that provided only the
data that was necessary (as determined during query curation§ 4.1.2) for
solving the query, over-permission considers participants that shared data
that was not required to resolve the query, and under-permission considers
participant that withheld data that was necessary to address the query.
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All Concerning domain

Domain Always Never Always Never

Entertainment 55.6% 2.9% 60.5% 2.6%
Health&Fitn. 48.9% 7.7% 44.6% 9.7%
Smart Home 41.6% 9.3% 43.5% 7.6%
Travel 36.0% 10.5% 20.3% 3.8%
Shopping 32.2% 12.0% 24.0% 9.3%
Work&Produc. 30.8% 8.6% 27.6% 7.9%
Social 30.4% 8.1% 33.6% 9.9%
Finance 22.2% 16.9% 22.4% 13.9%

All 33.8% 10.7% 29.2% 10.8%

TABLE 1: Permission preferences (avg.) for always and
never share permissions. Concerning domain columns con-
tain data only from participants who mark the corresponding
domain as concerning.

Additionally, we analyze some of the most frequently
under-permissioned data types and find that participants
are less likely to share sensitive personal information. For
example, Child Name was not shared 65.1% of the time,
Work Information by 57.4%, and Passport Information by
54.0% across all data permission requests. These data types
are often essential for tasks, such as identity verification
or financial transactions. Importantly, participants who did
not share these data types frequently reported strong pri-
vacy concerns in relevant domains. For instance, 50.0%
(15) of participants who did not share Account Password
and 36.8% (25) who did not share SSN listed Finance
as one of their privacy concerning domains. This suggests
that participants are making intentional privacy-conscious
choices, particularly in areas they value most. While some
of these data types, such as SSN or Passport Information,
are often essential for providing functionality, we find that
others, such as Child Name and Travel Details, could be
reasonably substituted with dummy values in some scenarios
to maintain functionalities while respecting users’ privacy.

4.2.3. Participants’ permission preferences vary even
within various contexts/domains, thus requiring finer
contextual considerations. Participants are also able to
identify and correct AI agents’ mistakes in sharing
data. To make automatic decisions on users’ behalf, an AI
agent needs to understand the factors that influence users’
permission decisions. We dive into several factors.
Communication Context/Domain. Significant prior re-
search has identified the “context” of the communication
as a key factor in user decision-making around data shar-
ing [2], [8], [10], [36], [56]. Table 1 presents the eight
contexts (which we refer to as domains) for which we
record user preferences. We observe considerable variation
in participants’ permission preferences in always share and
never share permissions across different domains. For data
sharing, we note that participants express the most always
share permissions (i.e., 55.6%) for the Entertainment do-
main and the least permissions (i.e., 22.2%) for the Finance
domain. For the never share permissions, the inverse is true,
i.e., participants express their preferences to not share data

Domain Tool Always Yes (Once) No (Once) Never

Entertainment
Movie Database 58.3% 33.7% 5.9% 2.1%
Web 34.4% 52.5% 4.9% 8.2%
Apple Music 68.3% 30.2% 1.6% 0.0%

Travel

Weather 50.8% 37.9% 5.1% 6.1%
Local Search 42.9% 39.0% 9.9% 8.2%
Travel Booking 32.6% 45.4% 9.6% 12.5%
Calendar 43.9% 43.9% 5.3% 6.9%
Cloud Drive 17.8% 56.3% 9.6% 16.4%
Email 34.4% 50.8% 9.0% 5.7%

Work&Produc.

Slack 34.9% 47.6% 7.9% 9.5%
Email 27.7% 53.6% 8.3% 10.4%
Calendar 43.8% 47.4% 5.6% 3.2%
Cloud Drive 22.6% 64.5% 7.3% 5.6%

Health&Fitn.

Fitness Tracking 48.7% 35.4% 9.0% 6.9%
PregnancyPal 41.0% 42.6% 6.0% 10.4%
Nutrition&Diet 46.2% 37.3% 7.5% 9.0%
Hospital Booking 54.0% 33.9% 6.5% 5.6%
Calendar 54.8% 35.5% 4.8% 4.8%

Social

SMS 29.2% 51.4% 7.6% 11.7%
Cloud Drive 27.9% 54.1% 13.1% 4.9%
Instagram 26.2% 52.5% 14.8% 6.6%
Tinder 32.2% 50.0% 10.0% 7.7%

Finance Banking 24.8% 50.6% 11.3% 13.2%
Tax Management 22.6% 50.2% 9.2% 18.0%

Shopping Amazon 32.2% 45.0% 10.7% 12.0%

Smart Home Lighting Control 54.8% 32.3% 3.2% 9.7%

TABLE 2: Permission preferences across domains and tools.

for only 2.9% of cases within the Entertainment domain,
but in 16.9% of cases with the Finance domain. We also
observe that participants tend to give fewer always share
permissions, for domains that they self-report as privacy
concerning. This variation is particularly noticeable for
Travel and Shopping domains, where always share decisions
drop by 15.7% and 8.2%, respectively.

Differences Within Communication Contexts/Domains.
Next, we analyze the variance in participants’ permission
preferences within domains. We present the breakdown of
all participants’ permission preferences for data-sharing for
different tools within different domains in Table 2. Overall,
we note that participant preferences on data sharing for
tools have differences within domains. Barring domains
with single tools, Entertainment and Travel have the highest
standard deviation of 14.2% and 10.5% for always sharing,
and Finance has the lowest standard deviation of 1.1%. In
the case of Entertainment, Web browsing tool gets the least
always share permission preferences, and in the case of
Travel, Cloud Drive gets the least always share permission
preferences. Our investigation reveals that, in the context
of Travel, Cloud Drive is always used to access users’
travel documents (e.g., passport scans, visa records). While
participants allow access to these documents as they are
essential for some travel tasks, they do not prefer AI agents
to automatically retrieve and share such sensitive data.

For one-time sharing, Entertainment and Finance have
the highest and lowest standard deviation of 9.8% and 0.2%,
respectively. For never sharing and one-time non sharing
permission preferences, the standard deviation between tools
across domains remains mostly stable, and does not exceed
3.9% for never sharing and 2.8% for one-time non sharing.

These results indicate that permission preferences can
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GT PA Always Yes (Once) No (Once) Never

Necessary Necessary 41.8% 47.1% 4.9% 6.1%
Necessary Unnecessary 31.1% 36.0% 15.2% 17.7%
Unnecessary Necessary 30.2% 48.2% 12.0% 9.5%
Unnecessary Unnecessary 16.6% 21.0% 21.1% 41.4%

TABLE 3: Participant permission prefs. for perceived nec-
essary/unnecessary data (PA), along with ground truth (GT).

vary even within domains, and thus granular context consid-
eration is necessary for permission inferences, i.e., consider-
ing coarse context categories for understanding permission
preferences across users may be insufficient. Our permission
prediction model (in Section 5.1.3) thus encodes contextual
information at a finer granularity.
Differences When Users Align and Misalign With the
AI Agent. As we ask participants in our user study to
select the necessary data that the AI agent will need to
address a query, we develop a notion of participants devel-
oping an understanding of the AI agents’ execution. This
setup allows us to analyze how user permission preferences
may vary when they have some understanding of the AI
agent’s execution. Table 3 presents participants’ permission
preferences for perceived necessary and unnecessary data,
along with the ground truth (as determined in Section 4.1.2).
We observe that when participant perceptions of necessary
and unnecessary data align with the ground truth (1st and
4th row in Table 3), the rate of appropriate permission
decisions (allowing necessary data and denying unnecessary
data) is high. In such cases, participants are more likely to
express appropriate permissions, with an 88.9% and 62.5%
correct decision rate for sharing and not sharing. We also
note that, even when participants believe certain necessary
data is unnecessary (2nd row in Table 3), they are still
able to provide appropriate permissions, likely because data
selection for specific queries provides more context for
making an informed decision. Conversely, when the agent
makes incorrect decisions, i.e., presents unnecessary data as
necessary (3rd row in Table 3), 78.2% of times users share
data with the AI agent, which implies that many users tend
to believe the AI agent even when they are incorrect.

4.2.4. Participant demographics information (e.g., age)
and self-reported metrics (e.g., privacy consciousness)
correlate with their permission decision preferences.
Next, we analyze participants’ demographic information
(i.e., age, education, and sex) and self-reported metrics (i.e.,
AI familiarity, AI usage frequency, AI trust, and privacy
consciousness) to analyze how these factors influence par-
ticipants’ permission preferences. As for demographics, we
observe that the tendency to give Always Allow data sharing
permissions decreases with participant age, correlating with
generational differences in privacy attitudes as also observed
by prior work [2]. We observe that there is no substantial
difference in the permission preferences of male and female
participants. As for self-reported metrics, higher AI famil-
iarity and usage correlate with increased data-sharing prefer-
ences. We provide a more detailed analysis of demographics
and self-reported metrics in Appendix A.
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Figure 3: Distribution of standard deviation (SD) in par-
ticipant permission preferences within domains. SD of 0
implies that participants choose the same preference within
a domain, 0.1 implies there are 2 or 3 data types that do not
align with other data types within a domain.

4.2.5. Individual participants’ permission preferences
within a domain are often consistent; however, for some
privacy-conscious participants, there is a high variance
in their permission decisions. For an AI assistant to learn
users’ permission preferences and apply them in various
situations, an important criterion is that users’ decision-
making is predictable and consistent. To that end, we an-
alyze the consistency in participants’ permission decisions.
From Figure 3, we note that within a domain, participants’
permission decisions are often consistent. The standard de-
viation is lowest for the Entertainment and Smart Home
domains and highest for the Travel, Finance, and Shopping
domains. Notably, many participants have entirely consistent
data-sharing preferences within specific domains. There are
84.5%-85.6% of participants who are willing to either allow
or deny all data permission for the Entertainment and Smart
Home domains, 49.2%-56.4% for the Work & Productivity,
Health & Fitness, and Social Domains, and 32.1%-44.4%
for the Shopping, Finance, and Travel domains.

Additionally, we notice that some participants have rel-
atively high intra-domain preference variance. We therefore
analyze the top 10 participants with high intra-domain pref-
erence standard deviation and find that the wide variation
for these participants can be traced to several key personal
attributes, particularly AI trust levels, privacy concerns, and
AI familiarity. Specifically, 8 participants report low to
moderate trust in AI, even though 7 participants use AI
frequently, and all rate privacy as very important. For these
participants, the sensitivity of data types seems to matter
when they make permission decisions. For example, within
the Finance domain, participants often deny access to highly
sensitive personal data such as SSNs, bank account numbers,
and online account credentials, while allowing access to
relatively less sensitive data, such as tax filing status, savings
goals, or payment notes. Such a distinction leads to varied
preferences for participants even within a single domain.

4.2.6. Participants’ permission preferences tend to fol-
low similar patterns, presenting an opportunity to pre-
dict individual user preferences by leveraging insights
from other users. In a real-world deployment, we anticipate
that users will encounter a range of scenarios that may not
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Figure 4: Distribution of SD in participant permission pref-
erences across domains. SD of 0.1 means that preferences
are mostly consistent, and SD of 0.2 means that only 1 or
2 domains have a noticeable difference with others.
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Figure 5: Jaccard similarity for participant pairs within
groups. We group participants by the query set they answer.

arise during the training of a personal permission assistant.
For example, to not fatigue the users, a deployed permission
assistant may record a user’s preferences in one, two, or
a handful of domains, but users’ day to day questions
may span more domains. Thus, we seek to understand how
transferable users’ permission decision making patterns are
across contexts. Figure 4 presents the standard deviation of
permission allowance rate across domains for users (Figure 9
in Appendix B shows the distribution of average permission
allowance rates across domains for users.). We note that
46.3% of participants have a standard deviation below 0.1,
which means their permission is mostly consistent for all
the tested domains; 73.4% of participants have a standard
deviation below 0.2, which means only one or two domains
have a noticeable difference with other domains. Moreover,
we find that 8.9% of participants maintain consistent per-
mission preferences across all tested domains. We also find
that over 35.5% of participants (not explicitly represented
in Figure 4) show zero preference variance in at least half
of the domains they interact with, suggesting that they tend
to grant similar permissions across different contexts.

We also explore the consistency in permission prefer-
ences for data types across participants, as it can allow
us to learn preferences from groups of users with similar
preferences and apply them to other users. Figure 5 presents
the Jaccard similarity between participants’ permission pref-
erences on the same data permission requests. We note that
participants’ permission preferences for the same permis-
sion requests are not unique and in fact, resemble many
other users. For example, 69.7% of participant pairs (two
participants answering the same permission requests) have
similar data sharing preferences for 60% or more data types.
To further understand user variance and consistency in data
permission preferences, we analyze which data types exhibit

Top 10 high std. dev. data types Top 10 low std. dev. data types

Data type Std. dev. Data type Std. dev.

Account Credentials 0.498 Music Listening History 0.125
Employment Details 0.498 Hobbies and Interests 0.178
Driver License Number 0.489 Relationshop Preferences 0.212
Travel Itinerary 0.486 Test/Diagnostic Results 0.244
Passport Documents 0.485 Fitness Goal 0.244
Investment Information 0.483 Movie Preferences 0.246
Payment Method Details 0.482 Personal Biography 0.248
Bank Account Details 0.478 Travel Preferences 0.251
Social Security Number 0.475 Accommodation Details 0.255
Sender Email Address 0.461 Travel Destination 0.259

TABLE 4: Data types with high and low standard deviation
in participants’ data permission preferences.

the highest and lowest variability across participants. As
shown in Table 4, high-variance types like Account Creden-
tials, Employment Details, and Driver License Number (with
standard deviations of 0.49) indicate strong disagreement—
likely due to the sensitivity of data. In contrast, low-variance
types such as Music Listening History and Hobbies and
Interests (with standard deviations as low as 0.125) reflect
broad agreement, possibly because they are seen as low-risk
and frequently shared in everyday contexts. These patterns
suggest that preferences for some data types are relatively
predictable, while others show diverse responses and are
more challenging to predict.

5. Predicting User Permission Preferences

In this section, we explore the feasibility of predicting
users’ permission decisions by leveraging data from our user
study. We explore the potential of using individual user data
as well as leveraging data from other users in developing
an accurate permission prediction model. We also explore
the role of various factors, such as the domains/contexts,
individual data types, and variance in user permission pref-
erences, in the accuracy of permission prediction.

We anticipate a sustained progression in permission
modeling for AI agents over the next several years, during
which a wide variety of models will be explored. In this
paper, we focus more on the implications from our user
study results and present our permission assistant as a proof
of concept and/or initial exploration of the design space,
rather than a definitive solution.

5.1. Designing a Permission Prediction Model

Our findings in Section 4.2 indicate that although various
factors influence participants’ permission decisions, these in-
fluences ultimately result in relatively consistent participant
permission decisions. Thus, we investigate whether users’
prior permission decision history, their demographics, and
other self-reported attributes can be used to predict their
future permissions decisions.

A key challenge is that we possess limited data on users,
which may make it challenging to train a classifier that
attains a high accuracy. To this end, we explore a hybrid
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machine learning framework that relies on LLM-based in-
context learning [57] and collaborative filtering [29]. We
rely on LLM-based in-context learning because it can attain
a high accuracy even with a handful of examples (i.e., “few-
shot”) [19], [57]. We rely on collaborative filtering because
it allows us to learn from other users with similar permission
decision history [29], [30], thus complementing the limited
permission history we possess on individual users.

5.1.1. In-context learning. As we observe in Section 4.2.5
and 4.2.6, participants’ permission decisions remain consis-
tent within a domain and are transferable across domains,
we first attempt to learn preferences only from users’ own
permission decisions. To that end, we design an LLM-
based in-context learning framework using OpenAI’s o3-
mini reasoning-based LLM. To condition the LLM, we rely
on role-based prompting, user demographics, other self-
reported information, and user permission history.

Since our goal is to design an assistant that will as-
sist users in their permission decision making, we adopt
permission assistant as a role for the LLM. As for the
demographics we include, users’ age range, education, and
gender. For self-reported information, we mainly consider
users’ AI familiarity (e.g., usage frequency, usage purposes)
and privacy consciousness (e.g., value to privacy, trust in
AI). User permission history includes the query, data type,
and the name of the tool or AI agent requesting the data,
along with the user’s permission decision. As LLMs take
natural language input, we encode these features as natural
language instructions. For example, demographic informa-
tion is encoded as follows: a male in the 45–54 age group
with a bachelor’s degree. As an output, we condition the
LLM to provide a prediction label along with a confidence
score, which prior research has shown to be reliable [62].

5.1.2. Collaborative filtering. Motivated by our observa-
tion in Section 4.2.6, where groups of users exhibit similar
permission-granting behaviors across domains and scenar-
ios, we explore collaborative filtering in predicting user
preferences. Collaborative filtering is widely adopted in rec-
ommendation systems due to its effectiveness in capturing
implicit user-user similarities based on commonalities in
prior user preferences [29], [30]. We model user preferences
as an adjacency matrix, where columns represent data types
across contexts, rows represent users, and values in each cell
represent either positive (sharing) or negative (non-sharing)
permission preference. Since users do not provide their pref-
erences on all data types, several of the cell values are empty,
and our classification task is to predict the values of the cells.
We rely on model-based collaborative filtering, which uses
a light graph convolution network (LightGCN) [29].

LightGCN constructs a graph where users and permis-
sion requests (with context) are nodes, and edges represent
observed permission preferences. It learns embeddings for
users and permission requests by iteratively averaging infor-
mation from their connected neighbors. The final prediction
score is computed using the dot product between a user and
a permission request embedding, indicating the likelihood

that the user would grant the permission. This score is then
converted into a predicted label (i.e., allow or deny) by ap-
plying a threshold. The prediction threshold is configurable
for collaborative filtering, which we currently set to equalize
FPR and FNR (Appendix C provides more details).

5.1.3. Hybrid model using in-context learning and col-
laborative filtering. We next explore combining the in-
context learning and collaborative filtering models to incor-
porate learning from both: (1) individual user preferences,
which in-context learning incorporates, and (2) similar user
preferences, which collaborative filtering incorporates. We
combine these models by extending our in-context learning
framework (described in Section 5.1.1). Specifically, we in-
clude the results from a collaborative filtering model as tex-
tual descriptions for the LLM. For example, a recommended
permission decision is represented as follows: <Query: Can
you retrieve my tax filing details from last year?; Tool:
Tax Management; Data Type: SSN; Decision: Deny>. Since
preferences for different participants can vary within do-
mains (as shown in Section 4.2.3), such representation at
the query level (i.e., finer granularity) allows us to naturally
capture consistent preferences for individual participants.

While integrating collaborative filtering results, we only
consider high-confidence permission predictions. We con-
sider high-confidence predictions to be the ones where both
the false positive rate (FPR) and false negative rate (FNR)
are below 5%, which covers 35.0% of the permission re-
quests. Note that in our testing, we tried including all CF
predictions (i.e., both high- and low-confidence predictions)
in our hybrid model, but that deteriorates model accuracy.

Note that our collaborative filtering alone is incapable
of making predictions on previously unseen data, and our
in-context learning model only used data from individual
users. Our hybrid model allows collaborative filtering and
in-context learning to complement each other. As a result, it
yields a personalized predictor for each user (i.e., as many
personalized instances as users), composed of shared user-
specific CF parameters as well as an in-context learning
model trained on individual user data.

5.2. Evaluation

5.2.1. Datasets and metrics. We construct our training
and testing datasets using responses collected from the
user study to evaluate the effectiveness of our permission
prediction model. We only consider decisions marked as
yes, always share or no, never share as ground truth for
sharing and non-sharing data. Additionally, we exclude par-
ticipants who specified always/never sharing preferences for
fewer than five scenarios/queries. After filtering, our dataset
contains 7,563 permission decisions from 181 participants,
including 5,244 allowance and 2,319 denial responses. We
define a positive outcome as permission being granted and
a negative outcome as permission being denied. For model
training and evaluation, we perform 5-fold cross-validation.
Specifically, the user-answered questions are split into five
folds; in each iteration, we train on four folds and test on
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Figure 6: Distribution of classification metrics. For IC & hybrid models, the confidence
score is reported by the LLM. For CF, the confidence score is the difference b/w prediction
thresholds that reduce FPR and FNR, with larger values implying higher confidence.
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brid model metrics over the
fraction of users.

Metric CF (%) IC (%) IC & CF (%)

Accuracy 83.3±1.4 84.4±0.7 85.1±0.4
Precision 91.9±0.5 91.5±1.1 92.8±0.7
Recall 83.3±1.4 85.4±1.5 85.2±1.2
F1 score 87.4±1.0 88.3±0.7 88.8±0.5
FPR 16.7±1.5 17.9±2.3 15.2±2.1
FNR 16.7±1.4 14.6±1.5 14.8±1.2

TABLE 5: Classification metrics with full coverage across
different model configurations.

the remaining fold. This is repeated five times, so every
question is tested exactly once and is never used for training
and testing in the same iteration. This setup allows us to
evaluate the models on unseen data.

5.2.2. Classification confidence threshold. We start by
comparing model configurations: (1) a model trained on
individual user data using in-context (IC) learning, (2) a
collaborative filtering (CF) model trained on the entire
permission-granting history of all users, and (3) a hybrid
of in-context learning and collaborative filtering. Figure 6
presents the distribution of classification metrics for various
model configurations. Overall, we attain the highest accu-
racy (95.8%) for CF with a confidence threshold of 3.17.
However, we compromise on coverage7 as we are only able
to make predictions on 27.3% of the data. For IC, we attain
an accuracy of 89.9% with a confidence threshold of 0.90,
and a coverage of only 18.8%. For the hybrid model of IC
and CF, we attain an accuracy of 94.4% with a confidence
threshold of 0.91, and a coverage of 25.9%. These trends
indicate that, as the confidence threshold gets stricter, it
results in precise predictions but reduces the coverage.
Classification Accuracy. To make classification decisions
for all data, i.e., for 100% coverage, across all model
configurations, we are able to achieve an accuracy of 83.3%,
84.4%, and 85.1%, for CF, IC, and the hybrid IC and CF
model. Table 5 presents other classification metrics for full
data coverage. We note that the hybrid model outperforms

7. We define coverage as the fraction of permission requests for which
the model can recommend an action with confidence above a specified
threshold. Lower coverage, however, also means that users must make more
decisions manually, and only high-confidence cases are automated.

Hist. ratio 0% 25% 50% 75% 100%

#Queries 0 1-4 2-8 3-12 4-16

Accuracy (%) 66.9±1.6 77.7±1.3 82.1±0.7 83.7±0.8 85.1±0.4
Precision (%) 83.0±1.4 87.6±1.2 90.0±0.9 91.1±1.0 92.8±0.7
Recall (%) 65.7±0.7 79.1±1.5 83.6±0.6 84.7±0.7 85.2±1.2
F1 score (%) 73.4±0.9 83.1±1.0 86.6±0.4 87.8±0.7 88.8±0.5
FPR (%) 30.6±3.8 25.4±3.2 21.2±2.8 18.7±2.5 15.2±2.1
FNR (%) 34.3±0.7 20.9±1.5 16.4±0.6 15.3±0.7 14.8±1.2

TABLE 6: Impact of permission history on classification.

individual model configurations on all metrics, except for
recall and FNR. Notably, the FPR decreases by 2.7% when
recommendations from the CF model are taken into ac-
count. These results indicate that incorporating contextual
examples from the CF model enhances prediction accuracy.
However, as we note in Section 5.1.3 that these gains
strongly correlate with the quality of CF predictions.

As permission assistants will make predictions to share
data on behalf of users, a high precision and lower FPR may
be desired, which requires a compromise on model cover-
age. Thus, in practice, the users may need to be involved in
the loop for making data permission decisions (elaborated
in Section 7). Moreover, as we find (from Section 4.2.5)
that users express varying privacy concerns across domains,
custom confidence thresholds could be configured at the
granularity of individual users and/or domains. We also
find (from Section 4.2.6) that certain data types show a
high degree of variance across users, so they may also be
excluded from predictions to avoid mistakes.

5.2.3. Impact of permission decision history. In a real-
world setting, users may not be expected to provide per-
mission preferences for a large number of data types. Thus,
we explore the relation between number of training samples
available per user and accuracy of our permission assistant.

To assess the impact of permission decision history on
prediction accuracy, we incorporate different ratios of the
permission decision history into each user’s model context
and evaluate the corresponding performance. Table 6 shows
the metrics for our hybrid model under various ratios of
permission decision history. We note that even without any
permission history, the model still infers users’ preferences
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by leveraging users’ demographic information, AI usage
experience, and privacy concerns. We also observe that the
transition from no permission history to even a small amount
(i.e., permission history on 1–4 queries) yields significant
improvements (i.e., more than 10.8% increase in accuracy).

Overall, our results indicate that an increase in per-
mission decision history (i.e., an increase in training data)
results in improved prediction accuracy. This continuous
learning capability can facilitate real-world deployment, i.e.,
as users naturally generate more permission history over
time, the model can iteratively learn from them, leading to
increasingly accurate permission predictions.

5.3. Result Analysis

5.3.1. Per-user performance analysis. As each user has
their personalized model for predicting permission deci-
sions, we analyze how these models perform on permission
decision predictions for each user. Specifically, we compute
per-user metrics using the prediction results from each user’s
dedicated hybrid IC and CF model, and attempt to identify
the factors that contribute to lower or higher accuracy.
Overall Trends. Figure 7 presents the distribution for per-
formance metrics computed over individual users. Notably,
35.4% of users achieve accuracy greater than 90%, and
12.7% of users even achieve perfect accuracy, meaning every
permission decision predicted by their dedicated model is
correct. For precision, 70.4% of users reach values greater
than or equal to 90%, suggesting that these models are
reliable in correctly predicting data sharing (i.e., predicting
positive cases). In contrast, 34.8% of users achieve recall
values of 90% or higher, indicating that models are generally
conservative in making automated data sharing predictions.

The error metrics further elaborate on model perfor-
mance. The distribution for FPR shows that 48.2% of users’
false permission grants (i.e., FPR) are at or below 10% (with
0 false permission grants for 37.2% of users). Meanwhile,
34.8% of users have an FNR of 10% or less, indicating
that more than a third of the users’ models are able to
constrain the number of false permission denials. Overall,
the personalized models show promising performance in
predicting individual users’ permission decisions. In the
remainder of this section, we analyze the errors to gather
insights for further improving the models.
Detailed Analysis. We perform an in-depth analysis of the
bottom 20% (36) users with the lowest accuracy by com-
paring this group to the top 20% of users with the highest
accuracy. There are significant differences in the average
performance metrics between these two groups, for instance,
average accuracy (97.6% vs. 69.7%), recall (98.2% vs.
62.3%), and precision (98.0% vs. 69.2%). Next, we investi-
gate the factors that may contribute to these differences. We
first examine whether users’ self-reported attributes show
significant discrepancies. While some trends are observable,
for example, high-accuracy users report slightly lower AI
trust levels (2.39 vs. 2.81 on average), higher AI usage
frequency (3.19 vs. 3.08), and lower privacy concerns (4.06

vs. 4.14), these differences are not statistically significant
(Mann-Whitney U test p-values range from 0.07 to 0.95).
We then examine whether there are significant differences
in the number of permission decision history entries and
the number of collaborative filtering recommendations (as
we observe them to be key factors in improving prediction
accuracy in Section 5.2.2 and 5.2.3). We observe notable
differences in the average number of permission history
queries between the two groups (11.69 for high-accuracy
users vs. 9.38 for low-accuracy users, U-test p = 0.01), as
well as in the number of CF recommendations (3.96 vs.
2.90, U-test p = 0.07).

Next, we analyze the standard deviation in permission
allowance rates across domains for both high-accuracy and
low-accuracy users. We note that high-accuracy users tend
to have lower variability in their permission preferences
across domains, with a larger proportion of users exhibiting
smaller standard deviation values, indicating more consistent
preferences. In contrast, low-accuracy users show greater
variability in their permission preferences across domains.
For instance, 30.6% of high-accuracy users fall at the lower
end of the standard deviation range (≤ 0.04), compared to
just 11.1% of low-accuracy users. Similarly, at the upper
end (≥ 0.27), 22.2% of low-accuracy users exceed this
standard deviation threshold (0.27), while only 13.9% of
high-accuracy users do. We observe that high standard de-
viation in users’ permission decisions may make it more
challenging to accurately predict their permission prefer-
ences. For instance, predicting the preferences of a user with
a standard deviation of 0.43 yields subpar performance, with
an accuracy of 49.0%.

A closer look at this user’s prediction results reveals
the impact of such variance: although the user is generally
willing to share data in domains like Smart Home, Travel,
and Health & Fitness, they tend to deny data sharing in
Social, Finance, and Shopping. We surmise that when the
model sees more permission history from the first group
of domains, it tends to infer a higher allowance rate even
for the latter group, and vice versa, during five-fold cross-
validation. This suggests that for users with high variance
in their permission preferences, patterns learned from some
domains may not transfer well to others, resulting in re-
duced prediction performance. In contrast, when users have
more consistent permission preferences across domains (i.e.,
lower variance), the model finds it easier to transfer learned
patterns. For example, a high-accuracy user with a standard
deviation of just 0.01 achieves an accuracy of 98.0%, recall
of 100.0%, and precision of 97.8%. We note that it is
a key challenge to make predictions of users’ permission
preferences when there is a high degree of variance in their
prior permission decisions.

Finally, we investigate the impact of CF recommendation
accuracy on the two user groups. We find that high-accuracy
users have CF recommendations with an accuracy of 99.5%,
compared to 89.5% CF recommendation accuracy for low-
accuracy users. Additionally, when CF recommendations
are correct, the model consistently follows them, showing
100% alignment for low-accuracy users and 99.8% for high-
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accuracy users. However, when CF recommendations are in-
correct, the model still tends to follow them. This highlights
the importance of filtering out unreliable CF results to avoid
misleading the model’s final decisions. For CF predictions
to improve, it is crucial that users can be grouped with
others who share similar preferences. Thus, as more data is
collected—particularly from a larger and more diverse user
base—the quality of CF predictions naturally improves.

5.3.2. Contextual performance analysis. Next, we analyze
how well the model predicts user preferences under different
contexts, specifically across domains, tools, and data types.
Our goal is to examine whether there are significant differ-
ences in accuracy, FPR, and FNR among these contextual
factors, thereby revealing patterns in when and where the
model tends to be over- or under-permissive.
Performance by Domain. When analyzing performance
across different domains, we find that the model performs
slightly better at predicting permission requests in certain
domains. Notably, Work & Productivity (87.4% accuracy),
Health & Fitness (87.1%), and Entertainment (86.8%) ex-
hibit relatively high accuracies. In contrast, domains such
as Shopping (84.3% accuracy), Finance (81.5%), and Smart
Home (80.1%) show lower prediction accuracies.

We find that these results correlate with the variance of
permission decisions in domains (Figure 3 plots standard
deviation across domains). Specifically, the high-accuracy
domains have lower variance in participants’ permission
preferences and low-accuracy domains have the highest
variance in participants’ permission preferences. A closer
examination of the Smart Home results reveals a high FNR
of 23.8%, indicating a conservative bias in which the model
tends to reject permissions that users might have accepted
in this domain. Notably, Finance has the highest FNR of
all domains, at 28.3%, which reflects the model’s cautious
behavior in this particularly sensitive domain. By contrast,
the Social domain exhibits the highest FPR, at 23.3%, sug-
gesting that the model is more likely to approve permission
requests in less sensitive domains.

Overall, we note that while variance within domains
degrades accuracy, the degradation is not substantial, espe-
cially as compared to the degradation in accuracy with vari-
ance within the user’s permission decisions (Section 5.3.1).
Performance by Tool. At the tool level, disparities be-
come even more apparent. Tools with the highest accuracies
include Calendar (92.0%), The Movie Database (89.0%),
Tinder (88.8%), Hospital Booking (88.6%), and Weather
(88.4%). These are also the tools for which participants
tend to grant more permissions. For example, as shown
in Table 2, Calendar appears in multiple domains such as
Travel, Work & Productivity, and Health & Fitness, and
it ranks among the top tools with the most Always allow
permissions. A similar pattern holds for the other aforemen-
tioned tools, suggesting that the model predicts permissions
more accurately when there is more data available, and users
have consistent preferences for specific tools.

In contrast, some tools have noticeably lower accura-

cies, including SMS (76.4%), Cloud Drive (76.4%), Slack
(79.3%), Lighting Control (80.0%), and Banking (80.3%).
Among these tools, Cloud Drive (FNR of 31.4%), Banking
(27.3%), and Lighting Control (20.9%) suffer from high
FNRs, reflecting the model’s tendency toward caution.
Performance by Data Type. We observe substantial dif-
ferences while analyzing the model’s accuracy across data
types. For instance, some data types yield extremely high
accuracies, even reaching 100%, such as Fitness Goal and
Hobbies and Interests. Other data types with similarly strong
results are Relationship Preferences (98.1%), Personal Bi-
ography (96.2%), Travel Destination (95.5%), and Accom-
modation Details (95.4%). It is worth noting that these data
types also rank among those with the lowest preference vari-
ance among participants, as shown in Table 4. This supports
our hypothesis that data types with more consistent user
preferences are easier for the model to predict accurately.

On the other hand, data types like Payment Method De-
tail (59.1%), Employment Details (63.6%), Driver License
Number (71.4%), and Travel Itinerary (75.9%) show some
of the lowest accuracies. These data types also have the
highest variance in user preferences, according to Table 4.
In other words, data types with more diverse permission
preferences tend to be more difficult for the model to
predict. Other low-accuracy data types often involve highly
sensitive information as well, such as Personal Identification
Numbers (61.9%) and Travel History (63.2%). These types
of data also tend to have higher FNRs. For instance, Payment
Method Details has an FNR of 87.5%, Personal Identifi-
cation Numbers has 72.2%, and Driver License Number
has 66.7%. These are among the most under-permissioned
data types. Only a few show relatively high FPRs, such
as Employment Details and Travel History, both at 28.6%.
These results suggest that the model often misclassifies these
sensitive data types as unacceptable to share, even when
users may permit it. This reflects challenges in accurately
capturing context-sensitive boundaries for personally iden-
tifiable or other sensitive information.

6. Discussion

Reinforcing and Expanding Prior Knowledge. Our find-
ings on user permissions for AI agents confirm established
access control principles from traditional systems while
also revealing agent-specific dynamics. Consistent with prior
work on mobile applications and voice assistants [2], [43],
[49], [63], [70], our results show that over-permissioning
remains a key challenge, and that user decisions are highly
dependent on context, such as data sensitivity and the in-
formation’s recipient. However, the autonomous nature of
AI agents fundamentally alters the control dynamic. We
find that permission granting becomes a continuous process
of trust evaluation: when an agent makes a mistake, users
are significantly less willing to grant permissions, indicating
that agent performance is a new, critical factor influencing
privilege. Most critically for our work, we find that despite
these complexities, individual preferences exhibit a high
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degree of consistency within specific contexts and across
users. This predictable pattern is the key insight that enables
our permission-prediction system, demonstrating that foun-
dational privacy norms persist while the agent’s autonomy
introduces new factors for permission management.

Model Robustness and Limitations. As agents interface
with data and resources from potentially untrustworthy en-
tities, it is crucial that the permission inference is robust
against such attacks. When users communicate with AI
agents using natural language instructions, they often re-
veal implicit or explicit preferences about what the agent
is allowed to do. Such information can complement the
execution context and past user behavior in making accurate
predictions. In fact, prior work has used such information
to predict the expected control and data flow of AI agents
and detect anomalies [16], [79]. Similarly, prior work has
proposed AI agent architectures that, by design, limit the
flow of information between system modules [8], [79] and
reliably control the generation of text in LLMs [52]. We
believe that such approaches can be extended to support
robust permission management in AI agents.

That said, natural language interactions can be ambigu-
ous, and this remains an open problem for LLMs [45].
Our in-context learning model can be affected by this am-
biguity and may make mistakes when processing unclear
instructions. However, because we also rely on collaborative
filtering over deterministic data types, the system inherently
offers some resilience to such ambiguity for previously
seen data types. Once a request is mapped to a canonical
label, collaborative filtering predictions become insensitive
to wording. Moreover, taking only high-confidence predic-
tions and delegating uncertain data access permissions to
users can help mitigate the model’s robustness issues. This
approach pairs predictions with clear controls to make and
revoke decisions and to provide feedback, which reduces in-
terruptions for routine cases while allowing human oversight
in riskier or uncertain situations.

Towards Usable Permission Management. Automated
permission management is a multifaceted problem. Our
work in this paper focuses on one facet, and other impor-
tant facets, including improving the usability of permission
management in AI agents, remain challenges and open
avenues for future work. For example, during early use,
the assistant may still need to learn a user’s preferences; a
user’s preferences may change as their circumstances change
(e.g., a previously trusted entity becomes untrusted); and
some situations may be fundamentally difficult to predict.
Thus, a full-fledged permission system will need to include
not only a permission prediction module, but also UI/UX
for engaging the user directly in cases where the predictive
model has low confidence or makes a mistake—for example,
UI/UX for users to make explicit permission decisions, to
revoke previously-granted permissions, and to give feedback
to the permission assistant. We believe there is rich future
work to be done on how to design such a hybrid system
well. The important contribution of our work here is to start
this line of inquiry and to demonstrate that it is feasible: an

effective AI permission assistant can substantially reduce
the number of decisions that users must be asked to make
or evaluate directly, paving the way for a usable and secure
permission management system.

7. Conclusion

In this paper, we explored the capabilities and limits of
automating permission management in AI agents. Through
a user study, we found that long-standing challenges such as
over-permissioning persist in agentic systems, alongside new
issues unique to them. Notably, when agents make mistakes,
users become less willing to grant permissions, indicat-
ing that agent performance is a critical factor influencing
privilege decisions. We also found that permission choices
are strongly shaped by communication context, yet remain
consistent within that context across user groups. Leveraging
these insights, we developed a permission prediction model
that combines collaborative filtering with LLM in-context
learning, achieving 94.4% accuracy for high-confidence pre-
dictions. Even without prior permission history, the model
reached 66.9% accuracy, with just 1–4 samples improving it
by 10.8%. Our findings demonstrate the potential of learning
user preferences to automate many permission decisions.
However, challenges remain in enforcing predictions, im-
proving robustness, and designing usable interfaces. Overall,
this work advances automated permission management and
outlines key directions toward its practical deployment.
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Appendix A.
Analysis of Demographics and Self-Reported
Metrics

We analyze each participant’s basic demographic infor-
mation and self-reported metrics related to AI usage and
privacy consciousness to investigate whether these factors
significantly influence their permission preferences (see Fig-
ure 8). Figure 8a shows that participants under the age of
25 selected Always Allow permissions more frequently than
those over 55 (35.0% vs. 25.5%), suggesting a generational
difference in privacy attitudes. Additionally, participants
with higher levels of education granted fewer data-sharing
permissions overall (Figure 8b).

The self-reported metrics include AI tool familiarity,
usage frequency, trust in AI tools, and privacy conscious-
ness. We observe a significant shift in permission preference
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Figure 8: Group users according to their demographic in-
formation, which includes age group, education level, and
sex, as well as their self-reported metrics such as AI tool fa-
miliarity, AI tool usage frequency, AI tool trust, and privacy
consciousness level. For age groups, participants are divided
into below 25, 25-39, 40-55, and over 55. Regarding edu-
cation level, participants are categorized into four groups:
high school or less (HS), bachelor’s (BS), master’s (MS), and
PhD or other doctorate (PhD). For sex, F denotes female
and M denotes male. Self-reported metrics are measured on
a four-level scale (1-4) where a higher number indicates a
greater level; for example, a privacy consciousness level of
4 signifies the highest concern for privacy.

distributions across different levels of these metrics. As
shown in Figure 8d, participants more familiar with AI tools
were more likely to select Always Allow and less likely to
choose Never Share. Although AI usage frequency and trust
(Figures 8e and 8f) do not show strong effects on overall
permission preferences, those who used AI tools more often
and reported higher trust levels tended to favor Always
Allow. This suggests that greater engagement with AI may
correlate with a preference for smoother user experiences,
enabled by more permissive data-sharing settings.

For the privacy consciousness (Figure 8g), participants
with higher levels of privacy consciousness were more likely
to choose Never Share, reflecting a stronger desire to re-
strict data sharing. Interestingly, participants with medium
levels of privacy consciousness selected Always Allow less
often than those with high levels, but overall, they ex-
hibited a more permissive data-sharing pattern compared
to highly privacy-conscious individuals. While these self-
reported measures may lack standardization or objectiv-

17

https://www.kaggle.com/whitepaper-agents


Health & Fitness
Work & Productivity

Finance
Shopping

Travel
Entertainment

Social
Smart Home

 

Health & Fitness
Work & Productivity

Finance
Shopping

Travel
Entertainment

Social
Smart Home

 

Health & Fitness
Work & Productivity

Finance
Shopping

Travel
Entertainment

Social
Smart Home

 

Figure 9: Heatmap of permission allowance rates across
various domains for individual users. The figure is seg-
mented into three distinct user groups. In each segmentation
(user group), each column corresponds to a user and each
row to a distinct domain (Health & Fitness, Work & Pro-
ductivity, Finance, Shopping, Travel, Entertainment, Social,
Smart Home). Darker green indicates a higher permission
allowance rate, while darker red indicates a lower rate.

ity [14], and some participants may have inaccurate percep-
tions of their privacy attitudes, the overall trends provide
useful insights into potential user data-sharing behaviors. In
summary, our analysis indicates that demographic factors,
AI-related attitudes, and privacy consciousness are associ-
ated with participants’ data-sharing preferences. These find-
ings help us identify patterns that can be used to anticipate
general user attitudes toward data-sharing permissions.

Appendix B.
Analysis of User Permission Preferences Across
Domains

Figure 9 provides insights into data-sharing permission
preferences across domains among participants. It reveals a
high degree of consistency in overall permission behaviors,
as many participants exhibit uniform preferences across
different domains, evident from extensive areas of homo-
geneous coloring. At the same time, variations in color
intensity highlight specific domains, such as Finance and
Shopping, where permission preferences significantly differ
from more permissive areas like Health & Fitness and
Social for some participants. These patterns emphasize that
while participants generally maintain consistent permission
preferences across domains, the distinct contexts of each
domain can lead to observable variations in the data-sharing
preferences of some participants.

Appendix C.
CF Model Prediction Threshold

Since the CF model’s performance is highly sensitive
to the prediction score threshold, we establish a baseline
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Figure 10: Collaborative filtering model metrics under dif-
ferent prediction score thresholds.

threshold for each fold in five-fold cross-validation by se-
lecting the point where the FPR equals the FNR. Figure 10
illustrates the CF model’s metrics under varying thresholds
for one of our test runs and shows the selected baseline
threshold for reporting the model comparison results. For
integrating the IC with CF, we use only CF predictions
with high confidence. In the figure, the negative region and
positive region define ranges of prediction scores that serve
as additional contextual examples for the hybrid model.
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Appendix D.
Meta-Review

The following meta-review was prepared by the program
committee for the 2026 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

D.1. Summary

This paper presents an automated permission man-
agement system for AI agents. The authors conducted a
vignette-based survey of 205 users across a range of do-
mains and scenarios to understand how users make permis-
sion decisions regarding data access and sharing in agentic
systems. Building on these findings, the paper presents a
preliminary design of a permission prediction model.

D.2. Scientific Contributions

• Independent Confirmation of Important Results with
Limited Prior Research

• Establishes a New Research Direction

D.3. Reasons for Acceptance

1) The paper builds on a long line of work that seeks to
understand factors influencing users’ decisions in terms
of sharing data and granting permissions to automated
systems. Prior work in this space has focused on non-
LLM-based personal assistants, and this paper obtains
results for users’ preferences in LLM-based agentic
systems.

2) This paper is one of the first to investigate the problem
of automating permission management for AI agents. It
argues that, since automation is a key value proposition
of AI agents, there is a need for permission manage-
ment systems that can automatically make decisions on
user’s behalf. The paper establishes this new subfield
of automated permission systems for AI agents, and
presents one point in the design space of this problem.
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